
1

UML Tutorial Part 2: UML Tutorial Part 2: 
UML Class and UML Class and 

Interaction DiagramsInteraction Diagrams

Presented by Igor Ivković
iivkovic@swen.uwaterloo.ca

2

Why UML Class Diagrams?Why UML Class Diagrams?

UML Class Diagrams

– Visual specification of types of objects that exist in a system 
and the relationships that exist among them

– A UML class describes a set of objects that share the same 
attributes, operations, relationships, and semantics

Class diagrams may specify both the conceptual [what] and  
implementation [how] details of the system

Class diagrams represent structural and not behavioural 
relationships that exist among system entities

Class diagrams are used as a basis to develop other UML 
diagrams including sequence and collaboration diagrams



2

3

AgendaAgenda

Terms and Concepts

o UML Class and Interaction Diagrams Example

o Summary and References

4

Class NamesClass Names

Class Names

– Simple Name (written as UpperCase-first Noun)

– Path Name
Package name :: Class name

Shape

Drawing :: Shape



3

5

Class AttributesClass Attributes

Class Attributes

– Represent named properties of a UML class

– UML class can have many attributes of different names

– Attribute name is generally a short noun or a noun phrase 
written in lowerCase-first text

– Attribute declaration may include visibility,  type and initial 
value: +attributeName : type = initial-value

Shape
+origin
#width : int
-height : int = 10

6

Class OperationsClass Operations

Class Operations

– Represent named services provided by a UML class

– UML class can have many operations of different names

– Operation name is generally a short verb or a verb phrase 
written in lowerCase-first text

– Operation may include visibility, parameters, and return 
type: +opName(param1 : type = initial_value) : return-type

Shape

+move()
#resize() : boolean
-display(always : boolean = true) : boolean



4

7

Class VisibilityClass Visibility

Class Visibility

– Three levels of class, attribute and operation visibility:

• private (-), available only to the current class

• protected (#), available to the current and inherited classes 

• public (+), available to the current and other classes

Shape

+move()
#resize() : boolean
-display(always : boolean = true) : boolean

+origin
#width : int
-height : int = 0

8

Class ObjectsClass Objects

Class Objects

– Each class represents a set of objects that share the same 
attributes, operations, relationships, and semantics

– For each of the class attributes, objects can have specific 
attribute values

– For each of the class operations, objects may have different 
implementations

s1 : Shape

…

origin = (10, 10)
width = 15
height = 30



5

9

Class GeneralizationClass Generalization

Class Generalization

– Represent a relation between a parent (a more abstract 
class) and a child (a more specific class)

– Generally referred to as a “is-a-kind-of” relationship

– Child objects may be used instead of parent objects since 
they share attributes and operations; the opposite is not true

Shape Rectangle Square

10

Class AssociationClass Association

Class Association

– Represent a structural relationship between class objects 
and may be used to navigate between connected objects

– Association can be binary, between two classes, or n-ary, 
among more than two classes

– Can include association name, direction, role names, 
multiplicity, and aggregation type

Shape Canvas
-source #target

Contains0..* 1



6

11

Class AggregationClass Aggregation

Class Aggregation

– Represent a specific, whole/part structural relationship 
between class objects 

– Composition (closed diamond) represents exclusive 
relationship between two class objects (e.g., a faculty cannot 
exist without nor be a part of more than one university)

– Aggregation (open diamond) represents nonexclusive 
relationship between two class objects (e.g., a student is a 
part of one or more faculties)

University Faculty Student

1 1..* 1..* 1..*

12

AgendaAgenda

Terms and Concepts

UML Class and Interaction Diagrams Example

o Summary and References



7

13

Recall Courseware System DescriptionRecall Courseware System Description
Informal Description:

– Construct the design elements for the Courseware System that can
be used to manage courses and classes 

– The organization offers courses in a variety of areas such as learning 
management techniques and understanding software languages 

– Each course is made up of a set of topics 

– Tutors in the organization are assigned courses to teach according to 
the area that they specialize in and their availability

– The organization publishes and maintains a calendar of the different 
courses and the assigns tutors every year

– There is a group of course administrators in the organization who 
manage the courses including course content, assigning courses to 
tutors, and defining the course schedule 

http://www.developer.com/design/article.php/10925_2109801_4

14

Identifying UML ClassesIdentifying UML Classes

Based on the system descriptions, using object-oriented 
analysis (OOA), identify classes, attributes, and operations

– For example, nouns / objects that share common properties 
and are used to enable system functionality become classes

– Other nouns related to class nouns become class attributes

– Verbs related to class nouns become class operations

After identifying classes, identify applicable relationships

– For example, identify cases where objects of one class 
reference (are associated with) the objects of another

– Also identify shared (inherited) behavior between classes



8

15

View Courses

Manage topics for 
a course

Manage course
information

View course
calendar

View tutors

Manage tutors
information

Assign courses
to tutors

Course
Administrator

Student

Tutor

CMS

16

Manage courseManage course
informationinformation

Course
Administrator

CMS

Create New Course

Modify Existing
Course

Delete Existing
Course

<<extend>>

<<extend>>

<<extend>>

Delete Existing Course
And Update Calendar

Validate Course 
Information

<<include>> <<include>>

…



9

17

Identified ClassesIdentified Classes

The following classes are identified:

– As use case actors:

• Course Administrator

• Student

• Tutor

– As system objects:

• Course Calendar 

• Course

• Topic

18

Identified Class OperationsIdentified Class Operations

The following class operations are identified:

– For Course Administrator, using use cases:

• View courses

• Manage topics for a course (Manage topic)

• Manage course information (Manage course)

• View course calendar

• View tutors

• Manage tutor information (but not manage tutors)

• Assign courses to tutors (assign tutors to courses)



10

19

<<control>>
Course Administrator

+viewCourses()
+manageCourse()
+manageTopic()
+viewCourseCalendar()
+viewTutors()
+manageTutorInformation()  
+assignTutorToCourse()

<<entity>>
Topic

+viewAllTopics()
+viewTopicInformation()
+createTopic()
+modifyTopic()
+removeTopic()

<<entity>>
Course

+viewAllCourses()
+viewCourseInformation()
+createCourse()
+modifyCourse()
+removeCourse()

<<entity>>
Tutor

+viewTutorInformation()
+createTutor()
+modifyTutor()
+removeTutor()

<<entity>>
Student

+viewAllStudents()
+viewStudentInformation()

<<entity>>
Course Calendar

+viewCourseCalendar()

manage

manage manage

view

view

contains

contains

1..*

0..*

0..*

0..*

20

Using Interaction DiagramsUsing Interaction Diagrams

Interaction Diagrams

– Represent interaction between class objects based on 
conditions and operations

– Can also represent a use case scenario of interaction 
between actors and the system

Two main subtypes: sequence and collaboration diagrams 

Sequence diagrams emphasize the temporal order of 
interaction and show lifetime of each object

Collaboration diagrams emphasize layout and show interaction 
as numbering of steps in a scenario



11

21

: Courseware System

manageCourse()

Course
Administrator

completed

manage options

createCourse

Use Case Sequence DiagramUse Case Sequence Diagram

Use Case: Manage Course 
Information (UC_ID1)

– Typical flow of events:

1. Course Administrator selects 
Create New Course

a)System invokes Create New 
Course use case

– Alternative

1. Course Administrator selects 
Modify Existing Course

a)System invokes Modify 
Existing Course

22

cmsUser : User
courseAdministrator : 
CourseAdministrator course : Course topic : Topic tutor : Tutor

manageCourse()

createCourse()

createTopic()

assignTutorToCourse()

courseID

topicID

completed

manage options

createCourse



12

23

User course : Course

topic : Topic

tutor : Tutor

courseAdministrator : 
CourseAdministrator

1 : manageCourse 

2 : createCourse

3 : createTopic

4 : assignTutorToCourse

1 .. x 

0 .. x 

24

AgendaAgenda

Terms and Concepts

UML Class and Interaction Diagrams Example

Summary and References



13

25

Tutorial SummaryTutorial Summary

In this tutorial, we have introduced UML class diagrams

We have revisited key elements of class diagrams including 
attributes, operations, generalization, and associations

Through examples, we have demonstrated how to create 
complete UML class diagrams

We have also shown how to demonstrate interaction between 
UML classes using UML sequence and collaboration diagrams

26

ReferencesReferences

G. Booch, J. Rumbaugh and I. Jacobson. The UML User 
Guide, Addison-Wesley, 1999.

M. Fowler and K. Scott. UML Distilled, Addison-Wesley, 2000.

B. Bruegge and A. H. Dutoit, Object-Oriented Software 
Engineering, Prentice Hall, 2004.


